ObservableJS in Quarto

Interactivity and reactivity

Author

Roy Francis

Published

26-Feb-2025

Linked plots

Code
data = FileAttachment("diamonds.csv").csv({ typed: true})
data
Code
viewof raw_table = Inputs.table(data)

Pick the variable for point color.

Code
viewof col = Inputs.select(["carat","cut","color","clarity","depth","table","price"],{value: "cut", multiple: false, label: "Color variable"})
Code
viewof x1 = Inputs.select(["carat","depth","table","price"], {value: "carat", multiple: false, label: "X1 axis"})
viewof y1 = Inputs.select(["carat","depth","table","price"], {value: "depth", multiple: false, label: "Y1 axis"})
Code
Plot.plot({
  color: {legend: true},
  marks: [
    Plot.dot(data, {
      x: x1,
      y: y1,
      stroke: col,
      tip: true,
      channels: {cut: "cut", color: "color", clarity: "clarity"}
    })
  ],
  grid: true
})
Figure 1: Scatterplot A.
Code
viewof x2 = Inputs.select(["carat","depth","table","price"], {value: "carat", multiple: false, label: "X2 axis"})
viewof y2 = Inputs.select(["carat","depth","table","price"], {value: "price", multiple: false, label: "Y2 axis"})
Code
Plot.plot({
  color: {legend: true},
  marks: [
    Plot.dot(data, {
      x: x2,
      y: y2,
      stroke: col,
      tip: true,
      channels: {cut: "cut", color: "color", clarity: "clarity"}
    })
  ],
  grid: true
})
Figure 2: Scatterplot B.

Tooltips are documented here.

Volcano plot

Code
dge = FileAttachment("dge.csv").csv({ typed: true})
dge
Code
contrasts = Array.from(new Set(dge.map(d => d.comparison)));
viewof contrast = Inputs.select(contrasts, {label: "Contrast", multiple: false})
dge1 = dge.filter(d => contrast.includes(d.comparison));
maxLfc = d3.max(dge1, d => d.avg_log2FC)
maxPval = {
  let mp = d3.max(dge1, d => d.p_val_adj);
  mp = mp < 0.05 ? 0.05 : mp;
  return mp;
}
minPval = {
  let mp = d3.min(dge1, d => d.p_val_adj);
  mp = mp > 0.05 ? 0.05 : mp;
  return mp;
}
viewof thresPval = Inputs.range([minPval, maxPval], {value: 0.05, step: 0.000000000001, label: "Pvalue threshold"})
viewof thresLfc = Inputs.range([0, maxLfc], {value: 2, step: 0.1, label: "LogFC threshold"})
dge2 = processDe(dge1, thresPval, thresLfc)
dge3 = dge2.filter(d => d.p_val_adj < thresPval && Math.abs(d.avg_log2FC) > thresLfc);
degs = dge3.length

Number of DEGs:

Code
Plot.plot({
  marks: [
    Plot.dot(dge2, {
      x: "avg_log2FC", 
      y: "nlpadj",
      fill: "state",
      fillOpacity: 0.7,
      tip: true,
      channels: {
        Gene: "gene"
      }
    }),
    Plot.ruleY([-Math.log10(thresPval)], {
      strokeWidth: 1.2,
      strokeDasharray: "4,3",
      stroke: "#808b96"
    }),
    Plot.ruleX([-thresLfc, thresLfc],{
      strokeWidth: 1.2,
      strokeDasharray: "4,3",
      stroke: ["#0571b0","#ca0020"]
    })
  ],
  color: {
    legend: true,
    range: ["#0571b0", "#ca0020", "#D3D3D3"],
    domain: ["down", "up", "neutral"]
  },
  x: {
    label: "Mean Log2 Fold change"
  },
  y: {
    label: "-Log10 Adj P value",
    grid: true
  },
  title: contrast,
  //grid: true,
  height: 400,
  width: 700,
  inset: 8,
})
Figure 3: Volcano plot of the selected contrast. Colored points denote DEGs. Vertical dashed lines represent log2FC threshold and horizontal dashed line represents p value threshold.
Code
Plot.plot({
  marks: [
    Plot.rectY(dge1, Plot.binX({y: "count"}, {x: "pvalue"})),
  ],
  y: {grid: true},
  height: 200,
  width: 300,
})
Figure 4: P value distribution of the selected contrast.
Code
viewof degTable = Inputs.table(dge3)
Table 1
Code
/**
* Adds neg log10 padj, score, sig and state to differential expression results
*
* @param {Array} data Output from DGE with adjusted p value and log2 fold change
* @param {Number} [threshold_pval] Adjusted pvalue cutoff for significance
* @param {Number} [threshold_lfc] Log2 FC cutoff
* @param {String} [pval] Field name for adjusted p value
* @param {String} [lfc] Field name for log2 fold change
* 
* @return {Array} Returns an Array with additional fields
**/
function processDe(
  data, 
  threshold_pval = 0.05, 
  threshold_lfc = 2, 
  pval = "p_val_adj", 
  lfc = "avg_log2FC"
) {
  return data.map(row => {
    // Calculate score
    const score = -Math.log10(row[pval]) * Math.abs(row[lfc]);
    
    // Calculate neg log pval
    const nlpval = -Math.log10(row[pval]);
    
    // Determine if the row is significant
    const sig = row[pval] < threshold_pval && Math.abs(row[lfc]) > threshold_lfc;
    
    // Determine the state based on lfc and pval
    let state;
    if (row[pval] < threshold_pval) {
      if (row[lfc] > threshold_lfc) {
        state = "up";
      } else if (row[lfc] < -threshold_lfc) {
        state = "down";
      } else {
        state = "neutral";
      }
    } else {
      state = "neutral";
    }
    
    // Return a new object with existing fields and new fields
    return {
      ...row,
      score: score,
      nlpadj: nlpval,
      sig: sig,
      state: state
    };
  });
}

Dotplot

Dotplots to visualize top DEGs across contrasts.

Code
viewof genes = Inputs.range([2, 40], {value: 20, step: 1, label: "Number of genes"})
exp1 = getTopGenes(dge, genes)
geneOrder = Array.from(new Set(exp1.map(d => d.gene))).reverse();
Code
Plot.plot({
  marks: [
    Plot.dot(exp1, {
      x: "comparison", 
      y: "gene",
      fill: "avg_log2FC",
      fillOpacity: 0.6,
      r: "nlpadj",
      tip: true,
      channels: {
        Gene: "gene", AdjPVal: "p_val_adj"
      }
    })
  ],
  color: {
    legend: true,
    scheme: "BuRd"
  },
  x: {label: "Comparison"},
  y: {label: "Genes", domain: geneOrder},
  r: {range: [3, 15], label: "Adjusted p value"},
  grid: true,
  height: 600,
  width: 400,
  marginLeft: 100,
  inset: 8,
})
Figure 5: Dotplot of the top DEGs across all contrasts. The size of the dots represent the adjusted p value and color denotes log fold change.
Code
/**
* Filters and returns the top N genes based on score
*
* @param {Array} data Output from DGE with adjusted p value and log2 fold change
* @param {Number} [topN] Number of top genes to return
* 
* @return {Array} Returns an Array
**/
function getTopGenes(data, topN = 20) {
  // Calculate scores
  const scoredData = data.map(d => {
    const nlpadj = -Math.log10(d.p_val_adj);
    const score = -Math.log10(d.p_val_adj) * Math.abs(d.avg_log2FC);

    return {
      ...d,
      nlpadj: nlpadj,
      score: score
    };
  });

  // Group by comparison and find top N genes
  const topGenesByComparison = {};

  scoredData.forEach(d => {
    if (!topGenesByComparison[d.comparison]) {
      topGenesByComparison[d.comparison] = [];
    }
    topGenesByComparison[d.comparison].push(d);
  });

  const result = [];

  for (const comparison in topGenesByComparison) {
    // Sort by score in descending order
    topGenesByComparison[comparison].sort((a, b) => b.score - a.score);
    
    // Get top N entries
    const topNGenes = topGenesByComparison[comparison].slice(0, topN);

    // Add the top N genes to the result array
    result.push(...topNGenes);
  }

  return result;
}