Code
= FileAttachment("diamonds.csv").csv({ typed: true})
data data
Code
= Inputs.table(data) viewof raw_table
Interactivity and reactivity
Roy Francis
26-Feb-2025
Pick the variable for point color.
Tooltips are documented here.
contrasts = Array.from(new Set(dge.map(d => d.comparison)));
viewof contrast = Inputs.select(contrasts, {label: "Contrast", multiple: false})
dge1 = dge.filter(d => contrast.includes(d.comparison));
maxLfc = d3.max(dge1, d => d.avg_log2FC)
maxPval = {
let mp = d3.max(dge1, d => d.p_val_adj);
mp = mp < 0.05 ? 0.05 : mp;
return mp;
}
minPval = {
let mp = d3.min(dge1, d => d.p_val_adj);
mp = mp > 0.05 ? 0.05 : mp;
return mp;
}
viewof thresPval = Inputs.range([minPval, maxPval], {value: 0.05, step: 0.000000000001, label: "Pvalue threshold"})
viewof thresLfc = Inputs.range([0, maxLfc], {value: 2, step: 0.1, label: "LogFC threshold"})
dge2 = processDe(dge1, thresPval, thresLfc)
dge3 = dge2.filter(d => d.p_val_adj < thresPval && Math.abs(d.avg_log2FC) > thresLfc);
degs = dge3.length
Number of DEGs:
Plot.plot({
marks: [
Plot.dot(dge2, {
x: "avg_log2FC",
y: "nlpadj",
fill: "state",
fillOpacity: 0.7,
tip: true,
channels: {
Gene: "gene"
}
}),
Plot.ruleY([-Math.log10(thresPval)], {
strokeWidth: 1.2,
strokeDasharray: "4,3",
stroke: "#808b96"
}),
Plot.ruleX([-thresLfc, thresLfc],{
strokeWidth: 1.2,
strokeDasharray: "4,3",
stroke: ["#0571b0","#ca0020"]
})
],
color: {
legend: true,
range: ["#0571b0", "#ca0020", "#D3D3D3"],
domain: ["down", "up", "neutral"]
},
x: {
label: "Mean Log2 Fold change"
},
y: {
label: "-Log10 Adj P value",
grid: true
},
title: contrast,
//grid: true,
height: 400,
width: 700,
inset: 8,
})
/**
* Adds neg log10 padj, score, sig and state to differential expression results
*
* @param {Array} data Output from DGE with adjusted p value and log2 fold change
* @param {Number} [threshold_pval] Adjusted pvalue cutoff for significance
* @param {Number} [threshold_lfc] Log2 FC cutoff
* @param {String} [pval] Field name for adjusted p value
* @param {String} [lfc] Field name for log2 fold change
*
* @return {Array} Returns an Array with additional fields
**/
function processDe(
data,
threshold_pval = 0.05,
threshold_lfc = 2,
pval = "p_val_adj",
lfc = "avg_log2FC"
) {
return data.map(row => {
// Calculate score
const score = -Math.log10(row[pval]) * Math.abs(row[lfc]);
// Calculate neg log pval
const nlpval = -Math.log10(row[pval]);
// Determine if the row is significant
const sig = row[pval] < threshold_pval && Math.abs(row[lfc]) > threshold_lfc;
// Determine the state based on lfc and pval
let state;
if (row[pval] < threshold_pval) {
if (row[lfc] > threshold_lfc) {
state = "up";
} else if (row[lfc] < -threshold_lfc) {
state = "down";
} else {
state = "neutral";
}
} else {
state = "neutral";
}
// Return a new object with existing fields and new fields
return {
...row,
score: score,
nlpadj: nlpval,
sig: sig,
state: state
};
});
}
Dotplots to visualize top DEGs across contrasts.
Plot.plot({
marks: [
Plot.dot(exp1, {
x: "comparison",
y: "gene",
fill: "avg_log2FC",
fillOpacity: 0.6,
r: "nlpadj",
tip: true,
channels: {
Gene: "gene", AdjPVal: "p_val_adj"
}
})
],
color: {
legend: true,
scheme: "BuRd"
},
x: {label: "Comparison"},
y: {label: "Genes", domain: geneOrder},
r: {range: [3, 15], label: "Adjusted p value"},
grid: true,
height: 600,
width: 400,
marginLeft: 100,
inset: 8,
})
/**
* Filters and returns the top N genes based on score
*
* @param {Array} data Output from DGE with adjusted p value and log2 fold change
* @param {Number} [topN] Number of top genes to return
*
* @return {Array} Returns an Array
**/
function getTopGenes(data, topN = 20) {
// Calculate scores
const scoredData = data.map(d => {
const nlpadj = -Math.log10(d.p_val_adj);
const score = -Math.log10(d.p_val_adj) * Math.abs(d.avg_log2FC);
return {
...d,
nlpadj: nlpadj,
score: score
};
});
// Group by comparison and find top N genes
const topGenesByComparison = {};
scoredData.forEach(d => {
if (!topGenesByComparison[d.comparison]) {
topGenesByComparison[d.comparison] = [];
}
topGenesByComparison[d.comparison].push(d);
});
const result = [];
for (const comparison in topGenesByComparison) {
// Sort by score in descending order
topGenesByComparison[comparison].sort((a, b) => b.score - a.score);
// Get top N entries
const topNGenes = topGenesByComparison[comparison].slice(0, topN);
// Add the top N genes to the result array
result.push(...topNGenes);
}
return result;
}
---
title: ObservableJS in Quarto
subtitle: "Interactivity and reactivity"
author: "Roy Francis"
date: last-modified
date-format: "DD-MMM-YYYY"
format:
html:
fig-align: left
title-block-banner: true
code-tools: true
code-fold: true
toc: true
execute:
echo: true
---
## Linked plots
```{ojs}
data = FileAttachment("diamonds.csv").csv({ typed: true})
data
viewof raw_table = Inputs.table(data)
```
Pick the variable for point color.
```{ojs}
viewof col = Inputs.select(["carat","cut","color","clarity","depth","table","price"],{value: "cut", multiple: false, label: "Color variable"})
```
::: {.column-page}
::: {.grid}
::: {.g-col-6}
```{ojs}
viewof x1 = Inputs.select(["carat","depth","table","price"], {value: "carat", multiple: false, label: "X1 axis"})
viewof y1 = Inputs.select(["carat","depth","table","price"], {value: "depth", multiple: false, label: "Y1 axis"})
```
```{ojs}
//| label: fig-scatter-1
//| fig-cap: Scatterplot A.
Plot.plot({
color: {legend: true},
marks: [
Plot.dot(data, {
x: x1,
y: y1,
stroke: col,
tip: true,
channels: {cut: "cut", color: "color", clarity: "clarity"}
})
],
grid: true
})
```
:::
::: {.g-col-6}
```{ojs}
viewof x2 = Inputs.select(["carat","depth","table","price"], {value: "carat", multiple: false, label: "X2 axis"})
viewof y2 = Inputs.select(["carat","depth","table","price"], {value: "price", multiple: false, label: "Y2 axis"})
```
```{ojs}
//| label: fig-scatter-2
//| fig-cap: Scatterplot B.
Plot.plot({
color: {legend: true},
marks: [
Plot.dot(data, {
x: x2,
y: y2,
stroke: col,
tip: true,
channels: {cut: "cut", color: "color", clarity: "clarity"}
})
],
grid: true
})
```
:::
:::
:::
Tooltips are documented [here](https://observablehq.com/plot/marks/tip).
## Volcano plot
```{ojs}
dge = FileAttachment("dge.csv").csv({ typed: true})
dge
```
```{ojs}
contrasts = Array.from(new Set(dge.map(d => d.comparison)));
viewof contrast = Inputs.select(contrasts, {label: "Contrast", multiple: false})
dge1 = dge.filter(d => contrast.includes(d.comparison));
maxLfc = d3.max(dge1, d => d.avg_log2FC)
maxPval = {
let mp = d3.max(dge1, d => d.p_val_adj);
mp = mp < 0.05 ? 0.05 : mp;
return mp;
}
minPval = {
let mp = d3.min(dge1, d => d.p_val_adj);
mp = mp > 0.05 ? 0.05 : mp;
return mp;
}
viewof thresPval = Inputs.range([minPval, maxPval], {value: 0.05, step: 0.000000000001, label: "Pvalue threshold"})
viewof thresLfc = Inputs.range([0, maxLfc], {value: 2, step: 0.1, label: "LogFC threshold"})
dge2 = processDe(dge1, thresPval, thresLfc)
dge3 = dge2.filter(d => d.p_val_adj < thresPval && Math.abs(d.avg_log2FC) > thresLfc);
degs = dge3.length
```
Number of DEGs: ${degs}
```{ojs}
//| label: fig-volcano
//| fig-cap: "Volcano plot of the selected contrast. Colored points denote DEGs. Vertical dashed lines represent log2FC threshold and horizontal dashed line represents p value threshold."
Plot.plot({
marks: [
Plot.dot(dge2, {
x: "avg_log2FC",
y: "nlpadj",
fill: "state",
fillOpacity: 0.7,
tip: true,
channels: {
Gene: "gene"
}
}),
Plot.ruleY([-Math.log10(thresPval)], {
strokeWidth: 1.2,
strokeDasharray: "4,3",
stroke: "#808b96"
}),
Plot.ruleX([-thresLfc, thresLfc],{
strokeWidth: 1.2,
strokeDasharray: "4,3",
stroke: ["#0571b0","#ca0020"]
})
],
color: {
legend: true,
range: ["#0571b0", "#ca0020", "#D3D3D3"],
domain: ["down", "up", "neutral"]
},
x: {
label: "Mean Log2 Fold change"
},
y: {
label: "-Log10 Adj P value",
grid: true
},
title: contrast,
//grid: true,
height: 400,
width: 700,
inset: 8,
})
```
```{ojs}
//| label: fig-pval-dist
//| fig-cap: "P value distribution of the selected contrast."
//| column: margin
Plot.plot({
marks: [
Plot.rectY(dge1, Plot.binX({y: "count"}, {x: "pvalue"})),
],
y: {grid: true},
height: 200,
width: 300,
})
```
```{ojs}
//| label: tbl-degs
//| tbl-cap: "List of DEGs for the selected contrast."
viewof degTable = Inputs.table(dge3)
```
```{ojs}
/**
* Adds neg log10 padj, score, sig and state to differential expression results
*
* @param {Array} data Output from DGE with adjusted p value and log2 fold change
* @param {Number} [threshold_pval] Adjusted pvalue cutoff for significance
* @param {Number} [threshold_lfc] Log2 FC cutoff
* @param {String} [pval] Field name for adjusted p value
* @param {String} [lfc] Field name for log2 fold change
*
* @return {Array} Returns an Array with additional fields
**/
function processDe(
data,
threshold_pval = 0.05,
threshold_lfc = 2,
pval = "p_val_adj",
lfc = "avg_log2FC"
) {
return data.map(row => {
// Calculate score
const score = -Math.log10(row[pval]) * Math.abs(row[lfc]);
// Calculate neg log pval
const nlpval = -Math.log10(row[pval]);
// Determine if the row is significant
const sig = row[pval] < threshold_pval && Math.abs(row[lfc]) > threshold_lfc;
// Determine the state based on lfc and pval
let state;
if (row[pval] < threshold_pval) {
if (row[lfc] > threshold_lfc) {
state = "up";
} else if (row[lfc] < -threshold_lfc) {
state = "down";
} else {
state = "neutral";
}
} else {
state = "neutral";
}
// Return a new object with existing fields and new fields
return {
...row,
score: score,
nlpadj: nlpval,
sig: sig,
state: state
};
});
}
```
## Dotplot
Dotplots to visualize top DEGs across contrasts.
```{ojs}
viewof genes = Inputs.range([2, 40], {value: 20, step: 1, label: "Number of genes"})
exp1 = getTopGenes(dge, genes)
geneOrder = Array.from(new Set(exp1.map(d => d.gene))).reverse();
```
```{ojs}
//| label: fig-dotplot
//| fig-cap: "Dotplot of the top DEGs across all contrasts. The size of the dots represent the adjusted p value and color denotes log fold change."
Plot.plot({
marks: [
Plot.dot(exp1, {
x: "comparison",
y: "gene",
fill: "avg_log2FC",
fillOpacity: 0.6,
r: "nlpadj",
tip: true,
channels: {
Gene: "gene", AdjPVal: "p_val_adj"
}
})
],
color: {
legend: true,
scheme: "BuRd"
},
x: {label: "Comparison"},
y: {label: "Genes", domain: geneOrder},
r: {range: [3, 15], label: "Adjusted p value"},
grid: true,
height: 600,
width: 400,
marginLeft: 100,
inset: 8,
})
```
```{ojs}
/**
* Filters and returns the top N genes based on score
*
* @param {Array} data Output from DGE with adjusted p value and log2 fold change
* @param {Number} [topN] Number of top genes to return
*
* @return {Array} Returns an Array
**/
function getTopGenes(data, topN = 20) {
// Calculate scores
const scoredData = data.map(d => {
const nlpadj = -Math.log10(d.p_val_adj);
const score = -Math.log10(d.p_val_adj) * Math.abs(d.avg_log2FC);
return {
...d,
nlpadj: nlpadj,
score: score
};
});
// Group by comparison and find top N genes
const topGenesByComparison = {};
scoredData.forEach(d => {
if (!topGenesByComparison[d.comparison]) {
topGenesByComparison[d.comparison] = [];
}
topGenesByComparison[d.comparison].push(d);
});
const result = [];
for (const comparison in topGenesByComparison) {
// Sort by score in descending order
topGenesByComparison[comparison].sort((a, b) => b.score - a.score);
// Get top N entries
const topNGenes = topGenesByComparison[comparison].slice(0, topN);
// Add the top N genes to the result array
result.push(...topNGenes);
}
return result;
}
```